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Abstract. The quantum fluctuations of the electromagnetic field between two parallel plates 
at zero or finite temperature are analysed. The spectrum of the energy-momentum tensor 
and the two-point correlations of the field are obtained in analytic form through the use 
of Hertz potentials in the Lorentz gauge. In particular, the general expression for the 
transition probability of atomic systems is explicitly worked out. 

1. Introduction 

The Casimir effect [ 1,2] is an important manifestation of the vacuum fluctuations 
predicted by quantum field theory. Some related effects, such as the influence of 
confining boundaries on atomic or subatomic systems, were analysed some time ago 
[3], but their importance has increased recently due to the possibility of performing 
experiments in microcavities [4]. That is the case, for instance, of the inhibition or 
enhancement of spontaneous emission by the presence of mirrors. 

With this fact in mind, we analyse in this paper the structure of the quantum 
electromagnetic field between two parallel perfectly conducting plates, either at zero 
or at finite temperature. In particular, we obtain analytic expressions for the spectrum 
of the electric and magnetic field separately, and for the full energy and stress tensor. 

There are several related previous works. For example: the calculation of the 
energy-momentum tensor between parallel plates [5]; the derivation of the Casimir 
effect from the Lorentz force acting on the surfaces of the plates [ 6 ] ;  the energy- 
momentum tensor at finite temperature for scalar and electromagnetic fields [7]; the 
spectrum of massless scalar fields [8]. 

In section 2 of this paper we obtain an explicit expression for the electromagnetic 
propagator in the Lorentz gauge through the use of Hertz potentialst. Although this 
approach is not unique, we believe that it has several advantages which make it worth 
describing the formalism in some detail. In particular, the Hertz potentials are well 
suited for the study of boundary effects [9] with more general geometries, which we 
will carry on in forthcoming publications. Thus, we calculate the field correlations of 
the electric and magnetic field, and extend the results in section 3 to the case of finite 
temperature. As pointed out by Ford [8], some caution is needed in assigning a 
frequency spectrum to the Casimir effect; one possible solution is to use spectral weight 

P For an application of the Hertz potentials to this kind of problem, see [9]. 
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functions, but for our purposes it is simpler to interpret the spectrum as a distribution 
[ 101, with the understanding that in practice it must be weighted with some function 
related to a specific measurement. 

Finally, in section 4, we present a calculation of spontaneous emission within our 
formalism. This phenomenon is usually studied in the radiation gauge and/or in the 
dipole approximation. Here, we show explicitly that the use of Hertz potentials also 
permits the calculation of the transition probabilities in terms of only the space part 
of the transition current. 

2. Zero temperature 

We look for a solution of the vacuum Maxwell equations 

F F Y , v  = 0 F,u.p -I- FP,.Y+ FYP., = 0 (2.1) 

subject to the boundary conditions that, in the Lorentz frame in which the conductors 
are instantaneously at rest, the normal component of the magnetic field and the 
tangential components of the electric field vanish on the inner surfaces of the conduc- 
tors. That is, 

F o , ( x )  = 0 F,,;,cx? = 0 

for i, j = 2 , 3  at x = ( t ,  0, y ,  z )  and (r, a, y ,  z )  

where a is the separation between the plates. We chose a Lorentz gauge invariant 
vector potential A,, such that 

FFY = A , ,  - A,,” OAF = O  apA, = 0. (2.3) 

&A2 +a3A3 = 0 (2.4) 

A,  = (4.1 , - cc l , 0 ,4 ,3 ,  - 4 , 2 ) .  (2.5) 

The geometry of the problem permits the imposing of the additional constraint 

which implies the existence of the Hertz potentials 4, J, such that 

In terms of these potentials, the electric and magnetic fields are given by 

=(-v:J,, - 4 . 0 3 + + , 1 2 ,  4 , 0 2 + ( L , 1 3 )  

= (-v?4, 4,12+ $.03 9 &,I3  - $,02? 
(2.6) 

where 

V: = a2a2 + a3a3. (2.7) 

The Maxwell equations (2.1) and (2.2) in terms of the potentials 4, J, are 

Od=O O*=O (2.8) 

equivalent to 

with the boundary conditions 

4 = 0  *.I = 0 (2.9) 

on the inner surfaces of the conductors. Given these conditions, we will call q5 and 
J, Dirichlet and Neumann fields, respectively. 
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To quantise the Dirichlet and Neumann fields we write the general solution of 
equations (2.8) as a linear superposition of primitive modes 

41,kA(x) = N,,, exp(ik, x) exp(-iwr) sin (5 X I )  

$!+,(x) = N,,,,_ exp(ik, * x)  exp(-iwr) c o s ( F x l )  

(2.10) 

where 

(2.11) 

Thus the Hertz potentials can be quantised as usual: 

(2.12) 

(2.13) 

(2.14a) 

with the commutation relations 

[a*,(ki), a*:,(k:)I = S ( k ,  - k:)Sf , -  (2.14b) 

and all other commutators vanishing. 
The correlation functions for the Neumann and Dirichlet fields can be written in 

a form which is usually obtained by the image method. Defining the Dirichlet and 
Neumann correlation functions as 

[J i (k , ) ,  JXk:)l= 6(kL - k : ) &  

c-(x,  x’) = D(x,  x’) = (O($(X)&X‘)lO) 

C+(X, x’) = N(x,  x’) = (O($(X)$(X’)lO) 

(2.15) 

(2.16) 

respectively, and substituting (2.14) in (2.15) and (2.16), one finds directly that 

c*(x,x’)= $ d2k,lNf,kilxexp[ik,.(x-r‘)-iw(t-t’)]  
f = O  ‘ I  

x {cos [ (5) ( X I  - xl ) ] cos [ (5) ( X I  + I]} 

and using the formula 

(2.17) 

a 
I = - 2  f S(kl-’) a =Q f cos(2kld)=-  IT /=-a f exp(i2k1al) (2.18) 
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one obtains 

exp{i[k, (x - x‘) + 2k,al- i w (  t - t ’ ) ] }  
X d3k 

C*(x,x’)= I = - X  / 2 ( 2 ~ ) ~ 3 w  

x{exp[ik,(x, -x’ l ) ]~exp[- ik , (x ,+xl ) ] )  

= F-(x, x’) r F + ( X ,  x’) 

where 

(2.19) 

(2.20) 
1 “  1 

F’(x, x’) = -7 c 
4.n I = - r  (x,  r x ;  -2aI)’+ (x2-x;)’+ (x3 -x i )2  - ( t  - t r ) 2 *  

Equations (2.20) can also be obtained from the image method taking into account the 
parity of primitive modes (2.10). Note that N +  D = 2F- and N - D = 2F’. 

An advantage of using Hertz potentials is that one can easily take into accou;t the 
transversality of the electromagnetic field. The procedure consists in writing A, in 
terms of Hertz potentials and introducing creation and annihilation operators for c j  
and $ only, and not for each component of A,. Thus, using (2.5) and (2.14), 

with the commutation relations (2.146). 
The electromagnetic vacuum state IO), is taken to be the state which satisfies 

a*,(k,)lO) = 6(k,)10) = 0 (2.22) 

for all 1 and k , .  
The normalisation constants for the electromagnetic field may be obtained by either 

demanding that each mode of frequency w makes the correct contribution to the 
electromagnetic energy: 

or using the Klein-Gordon inner product 

i d 3 x A ~ ~ ~ ~ O A l , , k i , +  = S ( k ,  - k:)6, , . .  

Both conditions above are satisfied if 

= IkJ2. (2.23) 

It is now straightforward to calculate, from the relation (2.5), the correlation function 

D+”(X,  x’) = (A,(x)Av(x’)) (2.24) 
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of the electromagnetic potential in terms of the Neumann and Dirichlet correlation 
functions (henceforth the brackets mean vacuum expectation value). We obtain 

ala;N -d&N o 
D =-[ 1 -a&N aoa;N o 

CL” c: 0 o a&D -a2a;D 
0 o a,a;D a2a;D 

The correlation functions of the electromagnetic field can also be evaluated using 
equations ( 2 . 6 ) .  In general 

and 

1 -812  -813 
2 2  - a l - a 3  -a23 F + ( x , x ’ )  

-al3 -az3 - & - a :  

where d a b  = a 2 / a x a  axb .  
As for the energy-momentum tensor, it can be written as 

T , , ( x )  = lim T, , (x ,  x ’ )  
X - X ’  

where [ l l ]  

( 2 . 2 5 ~ )  

( 2 . 2 5 b )  

( 2 . 2 5 ~ )  

(2 .26)  

F - ( x ,  x ‘ ) .  TJX ,  x ‘ )  = 2 - a* 
a x ,  a x ”  

(2 .28)  

We now apply the above formalism to the calculation of the correlation spectrum 
of the electromagnetic field as detected in an inertial system at rest with respect to the 
plates. For this purpose, we chose a fixed point at a distance x from one of the plates 
and evaluate equations (2 .25)  in the limit x + x ‘  and r - t’ = a. The result is 

( E J J )  = 0 ( 2 . 2 9 a )  

( 2 . 2 9 6 )  

where it is understood that ( E & )  = ( E , (  t + a, x)E,(  I, x)) and similarly for (B,BJ) and 
( E 3 ,  ). 
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The Fourier transforms of these expressions are (see the appendix) 

+[P"(2awl )  * P ( 2 ( x  - a l ) w ) ] ( - S i j  + n,n j ) )  

where we have defined the functions 

sin 5 cos 5 sin 6 p " ( 5 ) = 2 - - - - - 2 - - - .  
5' 5= 6 

Using the formulae ( A . 2 ) ,  it follows that 

8(@,)+ (BiB,)) 
3 w -_  

(2.30) 

(2.31a) 

(2.31b) 

( 2 . 3 2 )  

The first term on the RHS of this equation corresponds to the zero-point energy; the 
functions J ;  g and g' are given by (A .2 )  and have period T / C Y ;  notice that there is no 
dependence on x (the position inside the plates) in this last equation. 

Similarly we find, using (A .3 ) ,  that 

$((e,) - (B,B,)) 
w' sin[(2m - l ) ( r x / a ) ]  ( - a l ,  +3n ,n , )  -- - 

16ra sin( T X /  a ) 

( 2 . 3 3 )  

where the w dependence of this equation is given through the integer m defined as 
( m  - l) .rr/a 4 w 6 m n / a  (see the appendix). Thus the spectrum of (a)-(mj) is 
piecewise continuous as a function of the frequency w. For high frequencies the 
spectrum oscillates very strongly as a function of x inside the plates. It is worth 
noticing that the spectrum remains finite at the plates and tends to a constant value 
as w + m .  

For w < v / a ,  the above equations reduce to 
- W L  

471 (E&,) = - ninj (2.34a) 

(2.346) 

which reflect the well known fact that the components of the electric modes parallel 
to the plates and the components of the magnetic modes perpendicular to the plates 
vanish if their wavelength is larger than 2a. 
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We can also integrate ( 2 . 3 2 )  and ( 2 . 3 3 )  over all frequencies U ,  either by setting 
(T = 0 in the regular parts of (2 .29)  (see [ 9 ] ) ,  or by integrating each term in the series 
using formulae (A.4) and (AS). The final results are 

( 2 . 3 5 6 )  

The first term in ( 2 . 3 5 ~ )  is the well known zero-point energy and the second term is 
the contribution of the Casimir effect. Note that the expectation values (E2(x))  and 
(B2(x)) both diverge as x - ~  near the bounding plates, but their infinite contributions 
neatly cancel each other when evaluating the total energy density, thus yielding a finite 
value; this fact was first noticed by Boyer [ 121 and discussed at some length by de Witt 
[ 1 3 ] .  On the other hand, the Lorentz invariant ( E 2 ) - ( B 2 )  does diverge at the plates. 

We now calculate the tensor T,,(x, x‘) at the event points such that t - t’  = U and 
x = x’. The result is 

T,,(w)= 7 ~ - ~  C [ ( U - ~ E ) ~ - ( ~ U ~ ) * I - ~  
X 

/=-cr 

(2 .36)  

3 u 2 +  (2a1)2 0 0 
0 U* + 3( 2 ~ 1 ) ’  0 
0 0 a2 - ( 2 ~ 1 1 ) ~  0 
0 0 0 

The Fourier transform of this expression is 

and the final result after some straightforward algebra is 

1 1 
T r Y ( W ) = - W 3 ( ~ r ” + 4 t r t Y ) + -  { ( 2 a 4 * f ( 2 a 4 ( - T r y  + 4n,n,) 6 7 ~ ’  87T2a3 

+[g(2aw)-2awg‘(2aw)+(2aw)2f(2aw)](~~v+ t ,t ,  -3n ,nu)> (2 .37)  

where the functions f ( u )  and g ( u )  are those given in the appendix, and tr is the 
timelike unit vector defining the rest frame of the plates ( t r t r  = -1). 

In order to obtain the total energy-momentum tensor, we must integrate ( 2 . 3 6 )  
directly, using (A.4). The result is 

lox 720a 
T 2  

(2 .38)  
1 

T, Y = 2 ( T r u  + 4 t r t ,  1 w d o  + 4 ( 77W” - 4 “r n” ). 

Thus, we recover the usual zero-point plus Casimir energy-momentum tensor. 

3. Finite temperature 

We turn now to the case of the electromagnetic field between the plates at a finite 
temperature T. We use the image method to evaluate the corresponding correlation 
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functions, obtaining 

I = - x  

) (3.1) 
1 

T 
(xI  + x {  -2aI)2+(x,-x;)2+ (x3 - x i ) ’ - ( ?  - 

where p = ( k T ) - l .  
All the formalism developed in section 2 applies in a straightforward way. The 

field correlation functions are given by (2.25) and the energy-momentum tensor by 
(2.28) with F’ substituted by F ;  ( F ;  = f (  N T D ) ,  N by Np and D by Dp. 

As in section 2, we calculate explicitly the field correlations and the energy- 
momentum tensor for the particular case of an observer at rest between the plates at 
a distance x from one of them. The results obtained are: 

( E 3 j ) p  = 0 ( 3 . 2 ~ )  

(3.2b) 

(3.3) 

again in obvious notation. 
We note that in all cases, the Planckian plus the zero-point term are factorised out. 

Thus, an observer inside a cavity sees a quantum vacuum modified by the presence of 
the conducting walls, modulated by the hot thermal equilibrium radiation. 

The relation between the stress-energy tensor of the EM field and the thermodynamic 
quantities was discussed by Brown and Maclay [ 5 ] .  The importance of the free energy 
has been stressed by several authors [14]. 

4. Spontaneous emission 

Until now, we have studied the behaviour of the quantum electromagnetic field between 
parallel mirrors. In this section we analyse the coupling of such a field with matter. 
As mentioned in the introduction, this coupling produces effects which differ from 
those predicted by quantum electrodynamics in free space. That is the case of the 
inhibition or enhancement of spontaneous emission in the presence of mirrors [3,4]. 
In this section, we work this problem using the mode expansion of the electromagnetic 
field obtained in section 2. This approach has the advantage of allowing a full multipole 
expansion in a systematic way, clearly analogous to the usual procedure of quantum 
electrodynamics in free space. 

As usual, let us consider an interaction of matter and radiation given by the term 

- e  j’Ap d3x (4.1) 

where j’ is the matter current, and the continuity equation 

apjw = 0 (4.2) 
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guarantees the gauge invariance of physical results. F i r s t - d e r  perturbation theory 
permits the evaluation of the transition probability W $ k - J  per unit time for the 
emission of a single photon with mode ( 1 ,  k A ) N  or ( 1 ,  kl)D(*),  which turns out to be 

(4.3) 

in the long-time approximation. In this e uation e, and ef are the initial and final 
energies of the radiating system and V r k ’  is the time-independent matrix element 
of the operator given by (4.1). Explicitly, 

hiD1 2 
l 6 ( e , - E r - w )  W~l.k_J”D’ = zT/  vk.k-1 

\?Dl 

1 VFk-” = ( { ie j r ) (x)  exp(ik, - x)  d3x 
( 2 ~ ) ~ 2 a w  

I Z O  

(4.4a) 

(4.4b) 

Vk‘7k-’D = ( ( 2  1 ) [ ejL2)(x)( ik, sin x,) T)*awk: 

(4.4c) 

where 

jg=(fIj”li)=exp(iwot)jC(x) (4.5) 
and w o =  E , - & , - .  

Since we are not working in the radiation gauge, the contribution of the time 
component of the transition current cannot be eliminated. However, the continuity 
equation (4.2), together with the time dependence (4.5), permits the substitution 

.(,) . 1~ k, * j f i  1 7 ~  ( h / u ) j : ’  /T 

a 0 0  a iw, a 
-jfi sin-+- sin - x1 + cos - X I  

in integral (4.4b), whenever the radiating system is performing transitions involving 
bound states. Thus 

x exp(ik, * x)  d3x 1 # 0. (4.7) 
Following the analogous treatments in free space, we can perform a multipole 

expansion of the electromagnetic waves in expression (4.3), and consider a non- 
relativistic transition current j j  : [(e/2im)$T At this stage, some general observa- 
tions can be inferred from (4.4) and (4.7). Thus, the component of the transition 
current perpendicular to the plates is coupled just to the Neumann electromagnetic 
modes. For the parallel modes, both Neumann and Dirichlet modes contribute, but 
the minimum transition frequency is ~ / a .  This result has already been obtained for 
dipolar transitions [3] and constitutes the theoretical basis for the calculation of 
inhibited spontaneous emission [4]. 

In order to recover the known results, we just have to consider the dipolar approxi- 
mation in the limiting cases where the dipole moment pfi (= l / w o )  is either parallel or 
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perpendicular to the plates. In the latter case, the total transition probability w' turns 
out to be 

while for the parallel case 
1 

2 m . 0 , ~  
w"=- f I d2k6(wo-w) 

( 4 . 8 a )  

( 4 . 8 6 )  

where x stands for the position of the radiating system relative to one of the plates 
and A corresponds to the Einstein coefficient. 

5. Conclusions 

In this paper we have systematically used the Hertz potentials to solve the boundary 
problem of the quantum electromagnetic field between two parallel plates. The use 
of the Hertz potentials has several advantages: first, the boundary and transversality 
conditions of the electromagnetic field are easily taken into account; second, it can be 
applied to more general geometries than the parallel plates [ 9 ] ;  third and last, it 
provides a relatively simple formalism which permits the calculation of the complete 
energy-momentum tensor and the correlations of the electromagnetic field. These 
correlations are essential for the calculation of radiative corrections for confined atomic 
systems. 

The formalism that we have developed applies to any observer. In particular, we 
have considered a detector at rest between the plates. The spectrum of the energy- 
momentum tensor, ( 2 . 3 7 ) ,  and of the correlations, (2 .32)  and ( 2 . 3 3 ) ,  turn out to be 
very complicated, and they are certainly not thermal; in fact, from the mathematical 
point of view, it has to be interpreted as a distribution (however, a formal relation 
with a thermal spectrum is still possible, see [ 151) .  The case of an accelerated observer 
between the plates can also be calculated, and will be presented, together with some 
applications, in a future publication. 
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Appendix 

In this appendix we present the main formulae used in the text. 
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The integrals in (2.30) are 

exp(iwa) d u  2 7  
= -U sin( w u )  J" ( U  -i&)'- u 

( A . l a )  

(A. lb)  
exp(iwa)dm x 

exp(iwa)du x 

-q. [(u - ie)2 - u213 - 4u5 

--[sin(wu)-wu c o s ( w u ) ]  

-_ [ ( u 2 w 2 - 3 )  sin(wu)+3wu cos(wu)]. (A.lc) 

The infinite sums appearing in the expressions for (E&,) + (B,Bj )  are of the form [ 131 

sinkx T - - x  - -g"(x) = f ( x )  
k = l  k 2 

coskx x 2  T X  x2  

s i n k  x2x TX' x3 

f - +-=g'(x) 

2 -=--- 

k = l  k 2  6 2 4 

+--I g(x )  
k = l  k3 6 4 12 

where g ( x + 2 x )  = g(x),  and g (x )  is piecewise C2. 
One of the infinite sums appearing in (2.30) is of the form 

k = - r  k - (Y 

which can be written as 

(A.2a) 

(A.2b) 

(A.2c) 

sin( (uu) OC k(  - l )k  sin[ k (  u + T)] 
+ 2  cos(au) c 

(u k = l  k 2 - a 2  

( - l ) k  C O S [ ~ ( U + ~ ) ]  
-2  s in(au)  C 

k = l  k2 - cy2 

Now, using formulae 1.445 (7 and 8) of Gradshteyn and Ryzhik [13], we finally obtain 

sin[(2m - l ) v a ]  -- - 
k = - r  k - (u sin xa ('4.3) 

where m is an integer such that 2( m - l ) ~  < U S 2mx. Taking the second derivative 
with respect to cy of this last equation, one obtains an expression for the other infinite 
sum in (2.30). 

In order to integrate over frequencies w,  we need the formula 

~ o m e x p ( i o o ) w n  dw =in+ln!(u-n-l+(- i )nTTS(n)((u)  

which follows from entry 22, p 360 of [ 101. In particular: 

sin(aw) d o  = a-' lo- 
laa w C O S ( C Z ~ )  dw = -a-' 

lox w2 sin(aw) dw = -2n-3. 



2412 S Hacyan, R Ja’uregui, F Soto and C Villarreal 

Also, by taking derivatives of formula 1.422 (4) in Gradshteyn and  Ryzhik [16] one  
obtains 

D 1 -: sin2( r x )  C ( ~ - k ) - ~ = n ~  
k = - s  sin4( T X )  * 

References 

[ l ]  Casimir H B G 1948 Proc. Kon. Ned. Akad. Wet 51 793 
[2] Plunien G, Muller B and Greiner W 1986 Phys. Rep. 134 87 
[3] Purcell E M 1946 Phys. Rev. 69 681 

Power E A 1964 Introductory Quantum Electrodynamics (London: Longmans) 
Milonni P W and Knight P L 1973 Opr. Commun. 9 119 
Barton G 1970 Proc. R. Soc. A 320 251 

[4] Haroche S and Kleppner D 1989 Physics Today 42 24 
[ 5 ]  Brown L S and Maclay G J 1969 Phys. Rev. 184 1272 
[6] Gonzalez A 1985 Physica 131A 228 
[7] Tadaki S and Takagi S 1986 Prog. Theor. Phys. 75 262 
[8] Ford L H 1988 Phys. Rev. D 38 528 
[9] Candelas P 1982 Ann. Phys., N Y  143 241 

[ lo]  Gel’fand I M and Shilov G E 1964 Generalized Functions vol 1 (New York: Academic) 
[ l l ]  Hacyan S and Sarmiento A 1989 Phys. Rev. D 40 2641 
[12] Boyer T H 1969 Phys. Rev. 185 2039 
[13] de Witt B S 1975 Phys. Rep. 19 297 
[14] Barton G 1987 J. Phys. E: At. Mol. Phys. 20 879 

[15] Cocho G, Soto F, Hacyan S and Sarmiento A 1989 Inr. J. Theor. Phys. 28 699 
[16] Gradshteyn I S and Ryzhik I M 1980 Table oflntegrals,  Series and Products (New York: Academic) 

Ford G W, Lewis J T and O’Connell R F 1987 1. Phys. E: At. Mol. Phys. 20 899 


